Wire Development Group (WDG) Research Towards Advanced HTS Wire Technologies

2004 DOE Annual Peer Review
July 27-29, 2004
Washington, DC

Argonne National Laboratory

Los Alamos

Superconductivity Technology Center

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

University of Wisconsin-Madison

WDG Scope

Founded: 1991

Mission:

Develop the materials science base for advanced HTS wire, maintaining and extending US world leadership

Program Approach:

- Leverage unique resources and competencies of a world leading HTS company, three major DOE labs, and a key university program
- Focus on developing high performance (high I_c) advanced HTS wire in a multi-institutional collaboration

13 year experience base for effective co-operation and progress

Outline

Overview, Research Integration Alex Malozemoff (AMSC)

2004 Results: Pinning in 2G Leonardo Civale (LANL)

Wire

2004 Results: 1G wire Eric Hellstrom (UW)

Processing

Current Limiting Mechanisms, David Larbalestier (UW)

2004 Performance and Results,

2005 Plans

FY04 Funding Challenges and WDG Response

Due to DOE budget problems:

Funding to UW for 1G work cut for ½ year, only partially restored

Funding to ANL WDG work cut almost completely Funding to LANL is running out

Response: We regrouped, focused on a more limited range of topics, continued to make progress

Wire Development Group strongly recommends increased funding in order to fulfill its mission

WDG ranked #1 in Strategic Research at last year's Peer Review; has capability to continue worldwide leadership of advanced HTS wire research

2004 Performance: WDG Financial and Legal Framework

'No-funds exchanged' CRADA agreements between team members:

AMSC	(CRADA	suppor	t by AMSC) \$ 535K
-------------	--------	--------	-----------	-----------

LANL \$ 375K

ORNL \$ 225K

UW \$ 262K (reduced)

ANL \$ 80K (reduced)

Total DOE supported

\$ 942K

IP agreement protects confidential ideas

AMSC invested \$2.3M in its FY2004 in 1G R+D and \$3.3M in 2G R+D: strong commitment to HTS wire technology leadership

2004 Performance: Implementation

Principals:

Huang, Rupich, Otto, Malozemoff
Holesinger, Civale
Feenstra
Maroni
Larbalestier, Hellstrom, Cai

AMSC
LANL
ORNL
ANL
UW

Other Contributors:

Fleshler
Abraimov, Feldmann, Jiang,
Polyanski, Yuan, Liao, Song, Kim

AMSC
UW

Implementation:

Meetings, teleconferences, sample exchange, round robins, trimesterly planning

Focus on critical technical issues and improved I_c wire performance

AMSC provides high quality wire precursor for further processing or characterization

Multiple publications

2G activity initiated – important new results on 2G pinning

Significant progress achieved on 1G plan

Research Integration: WDG Leverages Complementary Competencies

AMSC Wire process innovation, materials science expertise

Product development and manufacturing

Customer input to wire specifications

LANL Analytical Electron Microscopy, electrical characterization

Small-scale powder and wire processing

ORNL 2G processing and characterization expertise

ANL Chemistry and reaction expertise

Unique characterization: Raman, Adv. Photon Source

UW Electrical and magnetic characterization; spatial imaging

Theoretical understanding of current limiting mechanisms

Special processing capabilities – overpressure

Altogether the world's most powerful effort advancing HTS wire technology

2004 Performance: Progress Against Objectives

- 1. Improve understanding of BSCCO-2223 formation
 - ✓ Heat treat quenching and characterization at UW on AMSC precursor identify new current enhancement mechanisms
 - ✓ AMSC uses information to achieve new short-length 1G record without OP:
 190 A (77 K)
- 2. Evaluate routes to increasing BSCCO-2223 phase purity in 1G wire Postpone due to budget cuts
- 3. Develop scanning laser microscopy (LTSLM) to identify local dissipation in 1G and 2G
 - ✓ Equipment delayed, but results on 2G conductor obtained at Erlangen correlation of dissipation and local grain boundary orientation observed
- 4. Evaluate overpressure processing (OP) for 1G wire production
 - Plan readjustment: Focus on OP performance improvement.
 - ✓ New 1G record 202 A (77 K, sf) with OP achieved at UW on AMSC precursor.
- 5. Initiate 2G pinning characterization work
 - √ Field-angle I_c characterization and TEM at LANL on AMSC 2G wire reveals correlated pinning from planar grain structures dominating.
 - Reduced field angle dependence was found with Y-doping and short processing in AMSC and ORNL 2G ex-situ films; nanodot pinning effect identified

Impact: WDG progress and knowledge base underlies successful AMSC production, achievement of >1000 meter-long 148 A (77 K) 1G HTS wire

New WDG R&D Records on Short 1G Wires (as of July 2004)

Ongoing 1G wire progress: laying the base for the future

The Context: Status and Economic Viability of HTS Wire

1G (BSCCO)

- AMSC manufacturing first generation (1G) multifilamentary composite BSCCO wire @>1,000,000 m/year
- Commercial sales
- Targeting \$50/kA-m (77K,sf) priceperformance
- ≥125 A (77 K, sf) in 4.2x0.21 mm² equivalent to 295 A/cm-width, continuing to advance

2G (YBCO)

- To broadly replace copper, <\$25/kA-m required
- Need advanced technology with higher I_c, lower cost – solution is 2G
- Major progress in establishing process capability for second generation (2G) YBCO coated conductor confirms scale-up strategy
- Multiple years still required for substantial (million meter/yr.) production output

1G HTS Wire: Competitive Context

Reactivated focus on 1G wire overseas

- Sumitomo Electric (SEI) increases performance up to 130 A using overpressure (HIP) processing (developed in parallel to WDG work), invests in major HIP production facility.
- Japanese "WDG" founded, supporting SEI program
- InnoST (China) enhances performance, supplies first Chinese cable project

1G wire critical to all commercial-level prototype projects during next 3-4 years: it is the "silicon" of the HTS wire industry!

Ongoing 1G R+D will be required to maintain US lead

Future Directions of WDG

- 1G wire process continues to offer significant opportunities for improvement and understanding
- Improvement of 2G pinning critical to coil applications
 - Characterization and understanding of unusual $J_c(B,T,\theta)$
 - New pinning mechanisms to enhance J_c
- Characterization techniques and current limiting mechanisms have much in common between 1G and 2G
 - Leverage insights

For FY05, we propose a balanced program on both 1G and 2G

Conclusions

- Wire Development Group is a unique example of research integration
 - Worldwide leadership in the materials science of advanced HTS wire
- 1G wire an ongoing critical element of DOE program and needs to be supported, at least at a critical mass level
- 2G wire research successfully transitioned into the WDG

Vortex pinning mechanisms in MOD-based coated conductors

L. Civale, B. Maiorov, T. Holesinger

Wire Development Group (WDG) Research Towards Advanced HTS Wire Technologies

2004 DOE Annual Peer Review July 27-29, 2004 Washington, DC

Argonne National Laboratory

Los Alamos

Superconductivity Technology Center

University of Wisconsin-Madison

We use the field, angular and temperature dependence of J_c to identify pinning mechanisms and regimes

 $\mathbf{H} \perp \mathbf{J}$ always (maximum Lorentz force)

The angular dependence of J_c is very reproducible and similar for MOD films on single crystal substrates and NiW tapes

PLD: large c-axis peak, small ab-plane peak MOD: small c-axis peak, large ab-plane peak

In MOD films there is no clear separation between random and ab-planes correlated pinning regimes

Anisotropic scaling does not work for MOD films, suggesting that correlated pinning is present for all orientations

Pinning differences between MOD and PLD films clearly correlate with structural differences

✓ Goal: 2G pinning - investigate pinning mechanisms in MOD

Result: Different pinning in MOD as compared to PLD

due to ab-plane correlated structures seen by TEM.

PLD:

- •columnar growth
- •c-axis correlated defects (dislocations)
- •enhanced c-axis pinning

MOD:

•laminar growth

 $0.25 \mu m$

- •ab-plane correlated defects (stacking faults)
- •enhanced ab-plane pinning

Field dependence of J_c for H//c: Three regimes

- Widely observed behavior
- • $H < H^* \Rightarrow$ single vortex pinning
- •H* ~ density of defects (B. Dam et al) (may be affected by self field effects)
- • J_c \propto H^{- α} \Rightarrow technologically relevant regime
- •smaller $\alpha \Rightarrow$ better field dependence

α has a repetitive, architecture-dependent value ⇒ useful process-characterization parameter

α is smaller for PLD due to larger c-axis peak, and can be further reduced by nano-engineering of defects...

...but α in MOD can also be reduced by defects' nano-engineering

α is temperature independent H_{cr} increases as T decreases

estimate:

$$H_{cr}(T) \sim 0.15*H_{irr}(T)$$

Below T ~ 40 K, for H//c we should only care about the $J_c \propto H^{-\alpha}$ regime

Field dependence of J_c for H//ab: better in MOD than in PLD due to larger density of correlated defects along ab-planes

- •H < H* \Rightarrow single vortex pinning
- •larger H* as compared to H//c
- •no obvious $J_c \propto H^{-\alpha}$ regime
- Extra defects introduced by Ho doping or nanodots have small effect on J_c for H//ab
- •MOD on IBAD MgO has an intermediate behavior

Angular Dependence at 75K: With/Without Nanodot Addition

Self-doping reduces the J_c anisotropy

Summary

- Laminar growth associated to the MOD method in AMSC CC results in large density of planar defects parallel to ab-planes, which dominates pinning in a wide angular range. Clear correlation between flux pinning and structural properties as revealed by TEM.
- Both introduction of nanoparticles and Ho-doping produce pinning improvement, with $\sim 25\%$ J_c enhancement at H=1T for H//c, a reduction of field decay parameter α to ~ 0.6 , and reduced anisotropy.
- ➤ Both self-doping and fast conversion also reduce the J_c anisotropy in AMSC and ORNL ex-situ films.

1G BSCCO thermomechanical processing is complicated

Approach to increase J_c in BSCCO

- Identify, understand, and eliminate current limiting mechanisms (CLM)
 - Pores and cracks
 - Residual 2212
 - Processes in Post Anneal that affect:
 - Flux pinning
 - Connectivity
- Hellstrom Global properties
- Larbalestier Local properties

CLM - Pores and cracks

- Overpressure (OP)
 processing closes pores and
 heals cracks
- 202 A record $I_c \Rightarrow 470$ A/cm width
- Used as a tool to densify samples
- OP studies on hold this year
- Sumitomo Electric industrializing OP processing

 J_c (0.1T, 77K) = 30.2 kA/cm²

CLM - 2212

- '03 identified 2212 as a major CLM
 - Decreasing 2212 SQUID index increases J_c
- Changing heat treatment does not eliminate 2212 with current powder
- Varying "2223" composition to reduce 2212 put on hold
- Refined 2212 SQUID magnetization analysis to measure T_c of 2212

TEM image - Holesinger (LANL)

CLM - During Post Annealing (PA)

Through-process quench samples

- 1st direct correlation of processing, microstructure, and electromagnetic properties
- Yuan and Liao PhD theses

>100% increase in I_c

Investigate CLMs in PA related to:

- Connectivity
- Flux pinning

Hypothesis: liquid affects connectivity Observation: 3221 develops from liquid during PA

Before PA

3221 develops during PA

XRD shows when 3221 develops in PA

MO imaging shows no cracks in quenched samples

Magneto-optical image

T=11K, FC in H=1200 Oe

I_c varies with quenching temperature

H_K - Kramer irreversibility field - is a measure of flux pinning

Definition and determination of H_K

 $I_c^{0.5} H^{0.25}$ = constant x (H_K- H) Kramer, JAP 44, 1360 (1973)

OX3162 FHT - 77K

I_c scales with H_K and depends on quench temperature

T_c of 2223 and 2212 change in opposite ways with quenching temperature

Quench Point/Temp

T_c of 2223 and 2212 change in opposite ways with quenching temperature

Hypothesis - T_c changes due to oxygen doping

4K increase in 2223 T_c increases I_c by >100% \Rightarrow Flux pinning

Oxygen doping changes flux pinning

650 660

Summary

- OP produces record 202 A Ic
- 2212 reduction is still important
- Post annealing has major effect on I_c
 - Interplay between:
 - Flux pinning Oxygen doping affects T_c of 2223 and 2212
 - Connectivity Liquid redistribution and conversion

Local Understanding of Jc

- Why? -
 - Distinguish connectivity from flux pinning limits to Jc
- How?
 - Use local probes to identify special regions of interest
 - Magneto-Optical Imaging (MOI)
 - Low temperature laser scanning microcopy (LTLSM)
 - Through thickness electron backscatter diffraction (EBSD)
 - SEM and TEM on exact local regions of interest
 - Contrast local and global Jc performance
- So what?
 - Develop new processing strategies for higher Ic and Jc

MO-CR to determine local J_c

- Current percolates through many obstacles in Bi-2223 tapes
- Magneto-optical imaging, especially with current reconstruction is the best way to visualize the large local variations
- In 2003 we showed that maximum of Jc was >4 times transport Jc
- 2004:
- a. Through process study
- b. Local determination of current-blocking defects

Sample: OP-CX9B-TA2 Bi-2223/Ag Transport $J_c(77K_t, OT)$: 41.3 kA/cm²

MOI: 77K (ZFC), 45mT (H // ab-plane)

How does the local J_c compare to the transport J_c throughout the process? Through-process quench study.

Ph D thesis work of Yongwen Yuan

PA strongly enhances the Jc distribution

Jc distribution broadens towards higher values especially during PA for both HT1 and HT2

Ph D thesis work of Sandy Liao

Local versus global Jc

Early in HT1 when much liquid residue is present <Jc> appears flat - later local Jc and transport Jc track well, although <Jc> is always much greater than transport Jc

MO-CR distributions at 50 and 77K

60% of best sample has local Jc > measured transport Jc(77K) of 40 kA/cm²

The PA raises the upper Jc distribution, not just <Jc>
Jc distribution is more sharply peaked at 77K than at 50K

Can we understand role of residual 2212?

Normalized distributions are self-similar at 77K, but show extra weight at high Jc at 50K, well below Tc of 2212

What blocks the current *locally* in Bi-2223?

- Identify low and high-J_c areas by MOI
 - Low Jc 40-80 kA/cm²
 - High Jc 150-230 kA/cm²
- SEM backscatter of both regions
- FIB cutting for later TEM

Sample: OP-CX9B-TA2 Bi-2223/Ag Transport $J_c(77K,0T)$: 41.3 kA/cm²

MOI: 77K (ZFC), 45mT (H // ab-plane)

Low J_c region has more basal-plane termination

Coated Conductor questions

- How to increase flux pinning? (Civale)
- How thick can YBCO usefully be made?
 - Present industrial optimum is ~ 1µm, ~270A/cm
 - Why does Jc go down as t goes up?
 - Is epitaxy maintained as thickness increases?
- Over what H, T are GBs still obstacles to current?
 - Is misorientation the only variable?

See talk by Holesinger, Feldmann and Feenstra - Thursday afternoon

Sample sets and sources:

AMSC (~270A and 130A/cm, 1 μ m thick, 1.3 and 2.7 MA/cm²) MOD on RABiTS

ORNL (Feenstra) 0.3-3 μm thick 1-2.5 MA/cm²) BaF₂ on AMSC and ORNL RABITS

Do the YBCO grains really follow the template?

Liquid-driven growth produces 30-50μm grain size on ~100 nm YSZ!

The template is not determining the grain structure!

Same sample (different spatial locations)

2.9 µm thick ORNL BaF₂ film at 280A/cm width

Out of plane YSZ misalignments favor YBCO substructure even for 1 µm thick AMSC MOD film

YSZ out-of-plane alignment

YBCO grains on YSZ out-of-plane

"Redder" YSZ grains are more highly misaligned and have more "black" sub-grain structure $(\theta>2^{\circ})$

Angle between sample normal and nearest crystal axis

40 μm

Postdoc work of Matt Feldman in collaboration with Marty Rupich (AMSC)

Wire Development Group

Grains within grains: 1.8 µm thick BaF₂ film on AMSC RABITS

GBs marked for $\theta \geq 2^{\circ}$

Angle between sample normal and nearest crystal axis

Conical grains seeded from misaligned template grains develop larger $\Delta\theta$

But Ic is >300 A/cm

Do GBs still limit Jc in low FWHM CC?

PhD thesis work of Sang-II Kim in collaboration with Darren Verebelyi and Cees Thieme (AMSC)

One GB only limits Jc in this track

EBSD (on Ni-W, not YBCO) – the MO-visible GB has θ 7-9°, perhaps 5-7° on the YBCO

Low Temperature Scanning Laser Microscopy

$$\delta V(x_l, y_l) \approx -\frac{\partial J_c}{\partial T} \frac{E(x_l, y_l)}{J_c} 2n\Lambda \delta T$$

Focus scanned laser beam on CC surface with simultaneous recording of the electrical or/and optical response.

C.C.Chi, M.M.Loy and D.C. Cronemeyer, *Appl. Phys. Lett.* 40, 437 (1982)

M. Scheuermann, *et al*, *Phys. Rev. Lett.* **50**, 74 (1983)

V.A. Konovodchenko, A.G. Sivakov, A.P. Zhuravel' *et al, Sov. J. Low Temp. Phys.* 12, 311 (1986)

LTLSM shows significantly better resolution than MOI

Photo image

MOI image

T=11.6 K Zero Field Cooled image H=100 mT

LTLSM voltage response

T=78.9 K Bias point: I=287 mA <V>=734 μ V Scanning step 0.5 μ m

 $0 \mu V$

Details of current flow revealed by LTLSM

EBSD on Ni - YBCO 2-3° less

 $\theta \ge 2^{\circ}$

Large 7-9° GB segment focuses current through the lower angle GB

Dissipation is never uniform even at many times Ic

Local probes - Summary

- MO-CR shows:
 - Large headroom in Bi-2223 Jc throughout the process
 - Final post anneal shifts Jc weight to even higher Jc
 - Connectivity loss in lower-Jc regions associated with strongly misaligned grains
- LTLSM is almost ready collaborations show:
 - Spatial resolution several times better than MO-CR
 - Works in transport and in field!
 - Shows strong local variation of dissipation at GBs and within grains too?
- Orientation mapping by EBSD is a very powerful adjunct to all techniques
 - Shows unexpected degradations of epitaxy as films thicken
- Local track studies of CC show unexpectedly few blocking GBS even for tracks some 10 grains long and 1 wide
 - Most CC applications are still in the GB limit

WDG FY04 Performance - I

Plans

 Improve understanding of 2223 formation process in its full complexity

- Evaluate alternative routes to higher 2223 phase purity (new powder, alternate HT profiles) and evaluate their Jc potential
- 3. Understand current limiting mechanisms at more local scales: develop LTSLM

Performance

- Focused on final process stages, launched quenching studies with full array of characterization; coordinated and applied to AMSC R+D process
- 2. Put on hold due to budget cuts

3. Developed laser scanning tool; used Erlangen facility of Prof. Alexey Ustinov while UW equipment was being built

WDG FY04 Performance - II

Plans

4. Explore viable ways to make OP work in production (AMSC, UW)

5. Initiate 2G work - pinning and GB effects characterization and optimization

Performance

4. Refocused work on revised goal of using OP to reach higher Ic. Work limited by budget cuts.

5. WDG participation expanded to address 2G issues with new participants - Feenstra (ORNL) and Civale (LANL). Exploited commonality between BSCCO and YBCO studies.

WDG FY04 Performance - III

Plans

6. Understand and enhance flux pinning in coated conductors

Performance

- 6a. Field and angular dependence studies of flux pinning at LN and/or LHe temperatures have been performed on several MOD-based CC, and contrasted with PLD.
- 6b. TEM was used to investigate structure and correlate with pinning.

WDG FY04 Results - I

Plans

1. Improve understanding of 2223 formation process in its full complexity

2. Fyaluate alternative routes to higher 2223 phase purity (new powder, alternate HT profiles) and evaluate their Jc potential

- 1.
- UW quench studies of final heat treatment steps identify new current enhancement mechanism - 2223 T_c increase competing with effect of reduced 2212 T_c
- New method of identifying T_c of 2212 in 2223 developed
- AMSC uses this information to achieve new short length 1G record without OP - 190 A (77 K) and >1000 m 148 A production wire
- 2. Put on hold due to budget cuts

WDG FY04 Results - II

Plans

3. Understand current limiting mechanisms at more local scales: develop LTSLM

4. Revised goal: Use OP to achieve higher Ic

- 3.
- ✓ Find that resolution of LTLSM is better than MO - enables dissipation within local 2G grain to be observed
- 4.
- ✓ UW achieves new 1G record 202A (77 K, sf) on AMSC precursor

WDG FY04 Results - III

Plans

- 5. Initiate 2G work
 - pinning characterization and optimization

- ✓ Field-angle Ic characterization and TEM at LANL on AMSC 2G wire reveals correlated pinning from planar grain structures dominate
- ✓ Technologically relevant regime $Jc \propto H^{-\alpha}$ identified
- ✓ Nanodot pinning identified by LANL field-angle I_c and TEM in AMSC ex-situ Y and Ho-doped 2G wire
- ✓ ORNL achieves reduced fieldangle I_c dependence in ex-situ
 2G wire with shortened process time

WDG FY04 Results - IV

Plans

- 5. Initiate 2G work
 - grain boundary characterization and optimization

- ✓ UW establishes the field and temperature domain of grain boundary limitation of J_c: covers range of most power applications
- ✓ ORNL and UW find meandering and through-thickness angling of grain boundaries to be widespread in ex-situ 2G samples from both AMSC and ORNL. Some evidence shows that this effect may diminish grain boundary current-limiting effects

WDG Technology Integration

- The WDG is team-focused; now in its 14th year!
 - AMSC, ANL, LANL, ORNL, and UW synergistically working together
 - Added CC component in past year (Civale LANL, Feenstra ORNL)
- Three technical meetings a year define the work plan
 - Off-line collaborations keep work going between meetings
 - Graduate students are integrated into the work at ANL, ORNL, and UW
 - Outside collaborations further enhance the work (LTSLM-Ustinov/U. of Erlangen, Germany)
- Leveraging of effort is strong
 - AMSC 1G tape the best in the world common source for most BSCCO experiments
 - AMSC 2G tape a world leader in R&D 2G tape common source for many CC experiments

WDG 2005 Research Plans

1G: Bi-2223

- Build on new understanding of the post anneal to enhance 2223 To effects without countervailing 2212 To effect
 - Use through-process study with local registration of MO image and microstructure to understand the separate contributions of flux pinning and connectivity to J_c - apply LTLSM too
- Develop new strategies for better approaching an all-2223 phase state
- Achieve further increases in over-pressure processed 1G wire

2G: YBCO-CC

- Build on improved understanding of pinning mechanism in 2G wire to optimize pinning and further reduce the field-angle dependence
- Characterize grain boundary meandering in thick (>1 µm) 2G films and understand its effect on the grain boundary current density
- Understand relation of local blocking of current by grain-boundaries to global texture using ~1 µm resolution of LTLSM

WDG will continue to accelerate HTS wire performance progress, enabling improved production wire for applications